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INTRODUCTION

Many different simplified routing models have been developed throughout
the last 50 years. Some of the more popular models are: the Reservoir Rout-
ing Model (Puls, 1928; Goodrich, 1930); the Muskingum Model (McCarthy, 1938);
the Lag and K Model (Linsley et al. 1949); the Kinematic Wave Model (Lighthill
and Whitham, 1955); the Kalinin-Miljukov Model (1958); the SSARR Model
(Rockwood, 1958); the Muskingum-Cunge Model (Cunge, 1969); and the SWMM Model
(Huber et al., 1975). Each has been widely used at different places and times.
Currently, the Muskingum-Cunge Model is receiving much attention (Miller and
Cunge, 1975; Ponce and Yevjevich, 1978; Koussis, 1978; and Weinmann and
Laurenson, 1979) because: (1) it possesses an inherent potential for greater
accuracy since it is a diffusion-type model rather than a kinematic-type
model, the category in which the other models belong; and (2) its coefficients
can be evaluated from the channel's hydraulic properties.

Herein, a routing model is developed which encompasses all of the above
simplified routing models. This routing model is called a "Unified" Coeffi-
cient Routing Model. The term, unified, denotes the fact that it unifies many
of the simplified routing models into a single model. The Unified Model also
can serve as a framework in which the similarities and differences of the
various models can be better understood. The Unified Model, although devel-

oped independently, is similar to a generalized kinematic model reported by
Smith (1980).

The Unified Coefficient Routing Model has the following form:

ot*ht c 1"+ c, [t cy 0" + c, (1)
in which O is the outflow of a channel reach of length (Ax), I is the inflow
to the reach, the superscript (t) denotes the variable evaluated at time (t),
the superscript (t+At) denotes the variable evaluated at time (t+At) where
At is the time step; and Ci» Co, and Cq5 are routing coefficients which may be
empirically derived or evaluated from the hydraulic characteristics of the
channel reach. The coefficient C, accounts for the effect of lateral inflows
along the routing reach. Eq. (1) is called a "coefficient" routing model
since the inflows (It and It t:) and outflow (Ot) are summed after multiplying
each by a coefficient.

The variables, O and I, can also be represented by the‘discharge
parameter, Q. Thus, Eq. (1) may take the following alternative form:
J+l j j+1 j
Uep =6 G +C6 Q@ +CyQqy +C, (2)
in which the subscript (i) denotes the upstream end of the routing reach, the
subscript (i+l) denotes the downstream end of the routing reach, the super-
script (j) denotes time (t), and the superscript (j+1) denotes time (t+At).
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STORAGE ROUTING MODELS

The Unified Coefficient Routing Model of the form of Eq. (1) will be
developed first from the basic storage equation, i.e.,

I-0+q Ax = As/At (3)

I is the average inflow during the At time interval, 0 is the average outflow
during the time interval, and q is the average lateral inflow (+) or outflow
(=) along the Ax reach during the time interval. The storage (s) is assumed

to be a function of inflow and/or outflow according to the following linear
relation:

s = K [XI + (1-X) 0] (4)
in which X is a weighting coefficient, O < X < 1,
Another weighting coefficient (©) is introduced to regulate the relative

importance of the parameters (I and 0) at times (t) and(t+At). Upon using
Eq. (3), Eq. (4), and the © weighting factor, the following may be obtained:

- At
0 (12t _ oty L (1 - 0) (1F - of) + g ax = k/At [x (1FF
- 15 + (1 - x) (0FAE _ oty (5)
Then, using the relations,
~ At
K =A40x/c and a = c At/Ax = T (6)

where c is the wave speed, Eq. (5) can be written as follows:

A - ~ +A
o Tt @ ot 1F Lot Lo 1t 40 0% + g ax = 1/3 (x 1TPE
A
- x 1% + oAt | of _ g of™RE 4 ¢ ofy (7)
~ A ~ ~ ~ ~ ~ ~ -
or 03 1"t Lo ottt Lyt —a ot -3 e1t +300% +3 qox
—x 1R L ox 1t - ofAE L ot 4 x oAt _ x ot - 0 (8)

Upon grouping like terms in Eq. (8), the following is obtained:

~ A ~ ~ ~ +A
(0a-1+x0" 4+ G-0a+x) 1"+ @a-x) 1°°°
+(-a+0a+1-X)0"+qdxa=0 (9)
. t+At . . . .
After solving Eq. (9) for 0O , the following is obtained:
A -0) a a -
ottit _ [(1 ) 3 + X] 1t + [ 0 a - X ] It+At
1+0a-X 1+0a-X
- (1- 0) a - p Py
1+0a-X 1+0a-X
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Eq. (10) can be placed in the same form as Eq. (1) if the coefficients
(Cl’ C2, C3, and C4) represent the leading coefficients in Eq. (10), i.e.,

_(1-09)a+X

¢ = (11)
l1+0a-Xx
c, = a - X (12)
1+0a-X
C3 1 - (1 - g) a-X (13)
1 +0a-X
1 +0a-X
where: ; = ¢ At/Ax (15)
a=("+q™ (16)
0<0K 1 (17)
0< X< 1 (18)

KINEMATIC ROUTING MODEL

An equation of the form of Eq. (2) can be obtained also by using the
classical kinematic wave equation. The kinematic equation is derived by using
the conservation of mass equation, i.e.,

9Q/9x + dA/ot - q=20 (19)
and the assumption that the depth-discharge relation is single-valued, i.e,
dA/3Q = dA/dQ = 1/c (20)
in which ¢ is the kinematic wave speed.
Then, since
dA/3t = 3A/9Q 3Q/dt = 1/c aQ/at (21)

Eq. (19) can be expressed as the classical kinematic wave equation, i.e.,

3Q/3x + 1/c 3Q/3t - q = 0 (22)

or 3Q/3t + c 9Q/d9x - ¢ q

0 (23)

Now, approximating Eq. (23) with finite differences which use X and O
as weighting factors, the following is obtained:



j+l _ad _ j+1 oA
x (o7 - )+ -0 (o - gy + S (o (
it ox 0 (G

-d™M v a-o (o, -d)-eq-o0 (26)

i+
i 1)/2 and the subscript (i) denotes inflow, i+l denotes

outflow, the superscript (j) denotes time (t), and j+1 denotes time (t+At).

in which a = (qi + q

Eq. (24) can be rearranged into the following form:

j+l iy it _ 4 j+1 i i+l
X -Xx Q3 + - -
Q Q) + QG - Qi - K QL tX QL+ At/bx (0 q

i i+l i+l i+l
-0 Qi+l Q- Qi -0 Qi+1 +0 Qi) —cgqbt =0 (25)
Letting Z = ¢ Ot/bx, Eq. (25) can be rearranged as follows:
ot el - ol - n el e xd, s 7 ol
-eag™+ag, -5 03 o, +ead -qaam=0 (26

Grouping similar terms in Eq. (26), gives the following:
~ j+1 ~ j ~ j+1

1+0a- I b (=x - - J

( a-X Q) *(X-a+0a) Qi +(X-0a)q

+(-1+X+a-0a) Qi - dadbx=0 (27)

i:i, the outflow from the Ax reach at time
(t+At), the following is obtained:

Upon solving Eq. (27) for Q

j+1
Qi+1

1 -0)a+ X _j
[ ( )~a ] Qi + [ - :
1+0a-X 1+0a-X

1-(1-0)a-X 3j A
sl azX o yafxa (28)

1+0a-X 1+03a-X

Finally, Eq. (28) can be placed in the same form as Eq. (2) if the
coefficients (Cl’ Cy, Cq, and C,) are defined by Eqs. (11-14).

UNIFIED COEFFICIENT ROUTING MODEL

Egqs. (10) and (28) are identical except for notation. The former is
derived using the storage equation and the latter by using the kinematic wave

equation. Herein, Eq. (28) is utilized as the Unified Coefficient Routing
Model with coefficients Cl’ C2, C3, and C4. Thus,
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where: C =1+0a - X
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The various simple routing models can be obtained from the Unified
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Coefficient Routing Model, Eq. (29), by simply assigning particular values to

the parameters (0, X, a) of the coefficients, C

Muskingum: 0 =
0 <
2 =
Reservoir: 0 =
X =
a2 =
Kinematic: 1/2
0 <
2 =
Muskingum-Cunge: 0 =
X=
2 =

1/2
X< 1/2

cAt/Ax

1/2
0

cAt/Ax

<0< 1
X < 1/2

cAt/Ax

1/2

Ax/K At/Ax

Ax/K At/Ax

} stable

o through C4, i.e.,

At/K

At /K

ranges, see fig., 1

1/2 [1 - qo/(c Ax SO)]

cAt/Ax

(39)
(40)

(41)
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(44)

(45)
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SSAR: 0 =1/2 (51)

X=0 (52)
a = cAt/Ax = Ax/K At/Ax = At/K = at/T (53)
Kalinin-Miljukov: 0 =1/2 (54)
X=0 (55)
a = cAt/Ax = Ax/K At/bx = At/K = At/t (56)
Lag and K: 0 =1/2 (57)
X=0 (58)
a = cAt/Ax = Ax/K At/bx = At/K (59)
SWMM: @ = 0.55 (60)
X = 0.45 (61)
a = cAt/Ax (62)

In the above equations, the parameters (qo, S _, Ts, T) are defined as unit-
width discharge, channel bottom slope, time og storage, and time of propaga-
tion of a given discharge, respectively.

Verifications of the parameter values for 0, X, and a for the Muskingum,
Reservoir, and SSAR models are given in Appendices A, B, and C, respectively.
Since the Muskingum-Cunge Model is identical to the Muskingum Model except for
the values of the parameters (X and a), verification of the Muskingum Model is
sufficient. The verification of the parameter values for the Kinematic Model
is apparent from the derivation of Eq. (28). The verification of the Kalanin-
Miljukov parameters is based on the fact that the Kalinin-Miljukov Model is
identical to the Muskingum Model with X = 0 (Miller and Cunge, 1975). The
verification of the Lag and K Model is the same as the Reservoir Routing Model
since the former is identical to the latter except the inflow is first lagged
by either a constant value or some function of the inflow.

PARAMETER SELECTION

Proper evaluation of the parameters (c, K, At, Ax) is critical to
successful application of the Unified Coefficient Routing Model.

Wave Speed (c). The kinematic wave speed (c) may be computed from the
following:

c=BV=1,278 g0-3 qo‘z‘/n0°6 (63)
o o

where: B8 = 1.67 - 0.67 A /B2 dB /dy (64)
o o o



in which q, is the unit-width discharge, A  is the associated cross-sectional
area, B is the associated channel top width, dB_/dy is rate of change of B
with depth (y), n is the Manning n, and S_ is the channel bottom slope. The
parameters in Eqs. (63) and (64) may be assumed constant; in this case, they
are associated with a reference discharge (Q ) which may be some character-
istic flow such as the center of mass, the peak, or the mean of the discharge
hydrograph. The parameters in Eqs. (63) and (64) may also be assumed time-
dependent; in this case, ¢ is continually re-evaluated at each time step. The

first assumption produces a "linear" routing model, while the second produces
a "nonlinear" model.

Storage Constant (K). The parameter (K) may be computed from the following:

K = Ax/c (65)

in which Ax is the routing reach length and c is the wave speed. K may also
be obtained empirically from discharge observations; it is equivalent to the

time interval between the occurrence of the center of mass of inflow and that
of the outflow.

Time Step (At). The time step (At) may be obtained from the following:

At < Tr/M (66)

in which T_ is the time of rise of the inflow hydrograph and M is an integer
with the following range of values:

6 <M< 20 (67)

The larger values are associated with more rapid and nonuniform variation of
the inflow hydrograph.

Reach Length (Ax). The selection of the routing reach length (Ax) affects the
accuracy of the Muskingum-Cunge, Kalinin-Miljukov, and Kinematic Models.

Ponce (1980) shows that Ax must be restricted to the following range for the
Muskingum—-Cunge Model:

Ax < 0.5 [c At + qo/(c SO)] (68)

The Kalinin-Miljukov Model requires the following reach length (Miller and
Cunge, 1975):
Q

Ax = 53 Ay/AQ (69)
o

in which Ay/AQ is the slope of the depth-discharge rating curve. The
Kinematic Model requires the following reach length:

Ax € ¢ At (70)

Reach lengths for the other models (Muskingum, Reservoir, SSAR, Lag and K) are
influenced by the values empirically obtained for the routing coefficients.
Reach lengths that are much too long can have adverse effects on some of these
models, e.g., the Muskingum Model.



Channel Slope (So). The Muskingum—Cunge Model uses the channel slope (S ) in
Eq. (49) to compute X and in Eq. (63) to compute the wave speed (c). If the
Muskingum-Cunge Model is formulated as a linear model, X and c are constant
with time although they may vary for each Ax reach. In this case, SO is
determined as the average energy slope within each Ax reach during the
routing. S0 may be approximated as the average bottom slope; this is diffi-
cult to obtain in natural channels where the bottom slope is often quite
irregular. The average slope can be obtained from the Manning equation, i.e.,

2 ., 4/3

. 10/3
S, = Q B n/(2.21 A ) (71)

in which is the steady initial flow with associated top width (Bo) and
cross—-sectional area (Ao).

If the Muskingum-Cunge Model is formulated as a nonlinear model, X and c
vary with time and Ax. In Eq. (49) and Eq. (63), q,»> B, and n vary with the
flow. In this case, So may be obtained as in the linear model.

Depth-Discharge Relation. If the routing coefficients are evaluated from

channel hydridulic characteristics, the variables such as ¢, q_, A, B, etc. are
dependent on a depth-discharge relation as given by the Manning equation, i.e.,
3/2 33/3 32/3

Q= 1.49 S /(n ) (72)
in which the symbol (~) represents the average of the variable over time and
along the Ax reach. Also, A and B must be known functions of the average
depth (y) in the reach as given by a table of A or B vs. y or by some
appropriate analytical function such as:

B=k y" (73)
A=k 5™ e (74)

in which k and m are fitted parameters representing cross-sectional scale and

shape, respectively. Rectangular, parabolic, triangular shaped cross-sections
have m values of 0, 0.5, and 1.0, respectively. A value of m > 1 represents a
V-shaped section in which the width increases at a nonlinear rate with depth.
In Eq. (70), Q may be expressed in the following finite difference form:

Q=0.25 (¢ + ™+ <, + i) (75)

in which Q is an estimated value.

Eq. (72) may be solved by an appropriate iterative technique such as
Newton-Raphson.  Hence, using Eqs. (72-75), the iterative expression for the
average depth (y) assumes the following form:

P ST St My e Gy a5t (76)
where: £(3°) = Q - 1.49 501/2 /3,0 323y (77
AEGGHY /5 = Ja + 5/3)/3" (78)



and £ is the iteration counter. Convergence is attained when

~ ~3
AR T e, (79)

where Ey is small depth such as 0.01 ft.

SOLUTION PROCEDURE

Linear Model. In the linear form of the Unified Coefficient Routing Model,
the coefficients are considered to be constant for each Ax routing reach and
throughout the duration of the routing computation. The appropriate coeffi-
cients in Eqs. (39-62) are evaluated initially from observations or the
channel hydraulic characteristics. Then, Eq. (29) is applied recursively

along each Ax routing reach and at each At time step until the routing is
terminated.

Nonlinear Routing. In the nonlinear form of the Unified Coefficient Routing
Model, the coefficients are considered to vary with each Ax routing reach and
with time. The coefficients are_evaluated explicitly, i.e., if they are
dependent on the average depth (y), Q in Eq. (72) is evaluated:from Eq. (75)

Al+
with the unknown discharge (Qi+i] is estimated using a linearly extrapolated

value. Thus,

A o+ addadTl (of, - 37t 80
Qi = Qg + 08T Qg - ) (80)
Using Eq. (80) and Eq. (75), 5 is evaluated and then ; is computed from Eq.
(76). Then, A, B are computed from Eqs. (73-74) or a tabular function and the
parameters 955 C X, K, etc. are evaluated for the particular Ax reach and

At? time step. These parameters are used to compute the appropriate coeffi-
cients in Egqs. (39-62) which are used in Eq. (29) to compute the routed flow,
Qiii. The procedure is then advanced to another routing reach or another time

step, if there is only one routing reach, whenever

j+l T3+l 81
%41~ Gl <25 (81)
where: €_=¢ B Q/A (82)
e Q~ %y B Y 1
~ l+
If the inequality, Eq. (8l), is not satisfied, the next estimate (QJ+1) is set
+1

equal to 3 and the procedure is repeated. Provision may be made to specify
Q +1

Q dlrectly rather than using Eq. (82).

MODEL LIMITATIONS

The Unified Coefficient Routing Model is limited by accuracy constraints
to the following applications: (1) insignificant backwater effects due to
severe channel constrictions, bridges, dams, tributary inflows, tidal action;
(2) negligible upstream wave propagation due to tides, storm surges, very
large tributary inflow, and rapid operations of reservoir flow controls; and
(3) specified ranges of the channel bottom slope (S ) and the time of rise
(Tr) of the inflow hydrograph.

-10-



The first two limitations arise from the model's inability to simulate
upstream wave movement which encompasses backwater effects (small disturbances
which propagage upstream) and the upstream propagation of waves.

The third limitation results from the inherent assumption of a single-
valued depth-discharge relation, Eq. (20), used in the derivation of the
Unified Coefficient Routing Model. This assumption produces the following
constraint for all the variations of the Unified Coefficient Routing Model

(Reservoir, Muskingum, Kinematic, SSARR, Lag and K, and SWMM) except the
Muskingum—Cunge:

1.6 0.2 1
T S0 /(@ q, n

c '2) > 0.2/E (83)

where: ¢ = (m+l)2/(3m+5) (84)

and m is a cross-sectional shape parameter as used in Eq. (73); m = 0 for a
rectangular or wide channel and ¢ = 0.2. E is the error (percent) that will

be tolerated during the routing. The Muskingum-Cunge variation must satisfy
the following:

T 32'7 n0°6/(¢'q2'4) > 0.003/E (85)

where: ¢' = (m+3)/(3m+5) (86)
Eq. (86) is for a prismatic channel.

Eq. (83) is for kinematic-type models and Eq. (85) is for diffusion-type
models. A development of these criteria is given by Fread (1983).

CONCLUSIONS

A Unified Coefficient Routing Model is presented. It is derived from the
storage routing equation and also from the classical kinematic wave equation.
It is shown to unify various simplified routing models (Reservoir, Muskingum,
Lag and K, Kinematic Wave, Kalinin-Miljukov, SSARR, Muskingum-Cunge, and SWMM)
into a single model. Selection of parameters for the Unified Coefficient
Routing Model is discussed and the model's limitations are identified.

-11-
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APPENDIX A

Verification of Unified Coefficients for Muskingum Model

The Muskingum Routing Model has the following basic form (Linsley et al.,
1958; Miller and Cunge, 1975; Ponce and Yevjevich, 1978):

R K (a-1)
where: Cé =K - KX + At/2 (A-2)
Ci = (KX + At/2)/cc') (A-3)
Cé = (=KX + At/2)/C(') (A-4)
C3 = (K- KX - At/2)/Cg (A-5)

Using Eqs. (39-41) to evaluate 0, X, and a in Eqs. (30-35) for the
coefficients (CO, Ci» Cys C3), the following are obtained:

Co,=l1+0a-X=1+0.5A0t/K-X=(K-KK+At/2)/K = Cg/K (A-6)

c. = {1=9)a + X _ (1-0.5)At/K + X _ (KX+At/2)/K _

c! (A-7)

~ 1 ]

1 1+0a-xX CO/K Co/K L

c, - ©a - X o.g'?;/K_x - (-KXZ?EQZ)/K - ¢} (A-8)
1 +0a-X o o

c. = L1~ (l—f)a - X _1- (l;?}i)At/K - X _ (K-Ké:?;/Z)/K - ¢y (a-9)
1 +0a-Xx o o

Since Cl’ C2, C3 are identical to C', C!, C!, respectively, the verifi-

2’ 73
cation of Egqs. (39-41) is achieved; and the Unified Coefficient Routing Model,
Eq. (29), is identical to the Muskingum Model, Eq. (A-1) through Eq. (A-5).
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APPENDIX B

Verification of Unified Coefficients for Reservoir Model

The Reservoir Routing Model may be developed from the following
expression (Linsley, et al., 1958):

Hi

- 0 = A(KO)/At (B-1)

Upon expanding Eq. (B-1), the following is obtained:

t+At t+At t+At

0.5 (1 + 1'% ~ 0.5 (0 + oYy = (ko - ko%)/at (B-2)

Rearranging Eq. (B-2) gives:

Ot+At _ ( At /2 ) t ( At/2 ) t+At (K—At/Z

— t
K+At/2 K+At/2 K+At/§) 0 (B-3)

Therefore, the Reservoir Routing Model may be expressed as follows:

of it | cf 1% + ¢y 1P 4 gy o (B-4)
2 3
where: Cé = K + At/2 (B-5)
Ci = (At/2)/Cé (B-6)
Cé = (At/2)/Cé (B-7)
cy = (K - At/2)/c! (B-8)
(0]

Using Eqs. (42-44) to evaluate O, X, and a in Eqs. (30-35) for the
coefficients (Co, Cl’ CZ’ C3), the following are obtained:

~

cO =14+0a-X=1+0.5At/K = (K + At/2)/K = Cé/K (B-9)

c, = (l—O)a~+ X _ (1—Oé?>§t/K _ (és;i)/K - (B-10)
l1+0a-X o o

c, - 0 a - X _ O'g'?E/K _ (Aé{?é/K - ¢ (B-11)
1 +0a-X o fo)

1 - (1-0)a - X 1 - (1-0.5)At/K  (K-At/2)/K
C, = = v = v = C, (B-12)
3 1+0a-X Co/K Co/K 3

Since Cl’ C2, C3 are identical to Ci, Cé, Cé, respectively, the verifi-
cation of Eqs. (42-44) is achieved. Thus, the Unified Coefficient Model is
identical to the Reservoir Routing Model, Eq. (B-4) through Eq. B-8).

-14-



APPENDIX C

Verification of Unified Coefficients for SSAR Model

The SSAR Model (Rockwood, 1958; Miller and Cunge, 1975) may be expressed
in the following form:

t+At _ ( I-of

0 TS+At/2

) At + ot (C-1)

in which T_ is a storage constant. After expanding Eq. (C-1) and grouping
like terms, the following coefficient form of Eq. (C-1) is obtained:

ot L ar 1t 4o 1R L or of (c-2)
1 2 3
where: C' =T + At/2 (Cc-3)
(o] S
C! = (At/2)/C! (C-4)
1 o)
C! = (At/2)/C' (C-5)
2 o
cs = (T - At/2)/C' (C-6)
S (o]

Using Egqs. (51-53) to evaluate O, X, and a in Eq. (30-34) for the
coefficients (Co, Cl’ C2, C3), the following are obtained:

~

= - = = = ' -—
CO 1+0a X 1 + 0.5 At/TS (TS + At/2)/TS CO/TS (c-7
B (1—@); — (l—O.S)At/TS (At/2)TS s
€ = ~ T T CT =<t - Y9 (C-8)
1+060a-X o' s o' s
c - O~a - x ) 0.5 At/TS= (At/2)/TS= o (c-9)
2 1+03-x Co/Ts Co/Ts 2
]. - (l—O)z - X ]. - (l_O.S)At/TS (TS-AC/Z)/TS _ .
C3 = — = C'/T = C'/T = C3 (C-].O)
1+0a-X o' s o' s

Since Cl’ Cz, C3 are identical to Ci, Cé, Cé, respectively, the verifi-

cation of Egqs. (51-53) is achieved. Thus, the Unified Coefficient Routing
Model is identical to the SSAR Routing Model, Eq. (C-2) through Eq. (C-6).
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